
www.dasish.eu

Data Service Infrastructure for the Social

Sciences and Humanities

EC FP7
Grant Agreement Number: 283646

Deliverable Report

Deliverable: D5.4
Deliverable Name: DASISH Web Annotation (DWAN) framework

Task Leader: Olha Shkaravska, MPG-TLA
Work Package Leader: Daan Broeder, MPG-TLA

Contributing Partners and Editors: Valentina Ascuitti (KCL), Daan Broeder

(MPG-TLA), Stuart Dunn (KCL), Twan Goosen (MPG-TLA), Indrek Jentson
(University of Tartu), Przemek Lenkiewicz (MPG-TLA), Kees-Jan van de Looi
(MPG-TLA), Olof Olsson (UGOT), Stephanie Roth (UGOT), Olha Shkaravska
(MPG-TLA), Menzo Windhouwer (MPG-TLA).

DASISH

www.dasish.eu GA no. 283646

www.dasish.eu GA no. 283646

1

1. Table of Contents

2.	
 Executive Summary ... 1	

3.	
 Introduction to the DWAN framework ... 2	

3.1	
 Motivation and goals ... 2	

3.2	
 Requirements and user scenarios. .. 3	

4.	
 Annotation Tools .. 5	

4.1	
 Potential DWAN-client prototypes: state of the art on September 2012 5	

4.2	
 Developments after September 2012 .. 9	

5.	
 DASISH Web Annotator (DWAN) ... 9	

5.1	
 Framework architecture ... 9	

5.2	
 DWAN’s Data Model and its connection to Open Annotation Model 10	

5.3	
 DWAN Back-end ... 13	

Architecture in a nutshell .. 13	

Database and Database Access Objects .. 15	

REST Application Programming Interface .. 16	

5.4	
 DWAN front-end(s) ... 23	

Wired-Marker based front-end ... 23	

Front-end for ELAN ... 26	

Front-end for ANNEX .. 26	

5.5	
 Testing Procedure .. 27	

6.	
 Social Sciences and Humanities: Results and Outlook ... 28	

6.1	
 List of annotation tools used by the HSS community ... 28	

6.2	
 Functionality mapping .. 30	

6.3	
 Potential front-ends for DWAN in Social Sciences and Humanities. 35	

Appendix A: DWAN XML schema. .. 41	

Appendix B: DWAN Wired-Marker manual. .. 47	

2. Executive Summary

The availability of digital archives and other research data via the Internet creates new chances for
collaboration. Indeed, equipped with special software, researchers from different institutions,
countries and fields can work together via the Internet. Such collaboration can take the form of
annotating the on-line data and sharing these annotations using an annotation infrastructure. As stated
in the task 5.6 description: researchers need to be able to store the results of collaborative intellectual
work either as an annotation of a single fragment or in the form of typed relations between a number
of fragments.

The aim of this document is to provide a specification of the framework for annotating web-
documents developed according to task 5.6 plan. In this context an annotation is a remark over a
fragment(s) of an on-line document(s).

From the technical point of view the proposed framework consists of one back-end, constituted of
the server software and the database, and possibly multiple front-ends (clients). Developed within
DASISH project the DWAN tools are an instance of the DWAN framework. It consists of the back-

www.dasish.eu GA no. 283646

2

end part and the client, which is a significantly adjusted version of the Wired Marker1 Firefox
extension. We chose Wired Marker after a selection process, looking for a suitable tool as a general
DWAN client for annotating objects on the Web. The selection process is separately described later.

The core of the back-end is a database where annotations and information about corresponding
annotated target documents are stored together with the targets’ cached representations. Archiving
cached representations in the database is relevant when annotated documents are dynamic pages like
news sites or wiki-pages under construction.

A client in the DWAN framework exchanges data with the server by sending REST2 requests and
getting responses. Client-request bodies and server's responses have a form of XML. The client is able
to accept and send XML structures that obey a pre-defined XML schema. The schema mirrors a data
model that has been designed to represent the main data structures, which are involved in constructing
annotations.

The work in task 5.6 succeeded in delivering, next to the back-end, one front-end (client) tool for
the DWAN framework, and in collaboration with other projects, integrated two extra client tools. For
future work, this task also found a number of other tools from the Humanities domain that looked
promising to integrate in DWAN. In separate chapters, we present, an analysis of the annotation task
of DWAN clients in the context of a general overview of Humanities tools and Humanities research
workflow. We present also some user-scenarios that could be fulfilled by DWAN, either by the current
version or with some future development.

3. Introduction to the DWAN framework

3.1 Motivation and goals

In the last decades, next to the ever-growing amounts of data on the web, we have also witnessed
large amounts of data moving to digital archives. These archives have been connected to the Internet,
spreading the content through the research community. The availability of such data creates new
chances for collaboration. To bring this collaborative environment to a next, higher level, the
requirement is to develop a set of tools that allows groups of researchers from different institutions,
countries, or backgrounds to work together. Such collaboration can take the form of annotating the
data, and sharing these annotations using an annotation infrastructure.

By an annotation we mean a remark over a parts of a document(s). For instance it can be a text note
containing the short English translation of a certain sentence in a target document, which is in Catalan.
Annotatable documents include, for instance, web pages or web-documents or resources in domain
specific formats such as transcriptions originally created by linguistic software, e.g. EAF-files created
by the ELAN multi-media annotation tool.3 To bring in the collaborative element such annotations
should be shareable between different (groups of) users and if editable by different tools with
(domain) specific capabilities.

1 https://addons.mozilla.org/nl/firefox/addon/wired-marker/

2 http://en.wikipedia.org/wiki/Representational_state_transfer 2 http://en.wikipedia.org/wiki/Representational_state_transfer

3 https://tla.mpi.nl/tools/tla-tools/elan/elan-description/

www.dasish.eu GA no. 283646

3

Based on these ideas of shareable annotations that can be worked on by different domain specific
tools we have set ourselves two goals. Addressing the first goal, we have come up with the one-server-
many-clients architecture, see section 5.1 for more detail and Figure 1 General DWAN Architecture.
Indeed, the server with the database is used to store annotations, which all have the same structure
independent on annotatable documents. This structure mirrors an annotation itself (e.g. a text
comment), a reference to the sources with the annotated fragment specifications, and, possibly,
references to cached copies of the annotated documents, see section 5.2. This uniformity opens a
possibility to design one database that stores annotations for different type of documents. On the client
side the situation is different in general.

There one must take into account the variety of annotatable objects because they have different

internal structure and client software must technically overwork the internal structure of a document
when creating an annotation for it. Therefore a specific client is to be designed for a specific type of
documents. For instance, annotating web pages and ELAN files need technically different approaches
due to the completely different internal structure of the corresponding annotated documents.

Addressing the second goal, we have developed the DWAN annotating tool, which by now consists
of the server software with the database and the Wired-marker-based DWAN client. Moreover,
specific clients have been designed for ELAN files. The DWAN back-end and the developed clients
are discussed in detail in sections 5.3 and 5.4 respectively.

3.2 Requirements and user scenarios.

As stated above, in the DWAN framework it is assumed that possibly multiple clients communicate
with a single back-end consisting of the server software which implements access to the database with
annotations. Annotations and information about annotated on-line resources (targets) are stored in the
database, together with cached representations of the targets. A cached representation is a copy, e.g. a
screenshot, of a target document. Storing cached representations allows retrieving the copy of an
annotated document when the actual web-document under the target’s URI has been updated so that
locating the annotation in it becomes difficult or even impossible. This may happen when the
corresponding fragment has been significantly changed or disappeared.

Figure 1 General DWAN Architecture

www.dasish.eu GA no. 283646

4

The client and server must “understand” each other and therefore follow some uniform rules. In a
nutshell, there are two such rules. The first one: exchange data by sending http(s)-requests from a
given finite collection of requests that the server understands. The second rule: the content of requests
and responds must obey a DWAN XML schema, which is a part of the server-side software. The
DWAN XML Schema mirrors a data model (see section 5.2) that has been designed to represent the
main data classes (annotation, target, principal, cached representation and notebook) and relations
between these classes.

As a proof-of-the-concept for the architecture design and its technical approach we needed to
develop not only back-end software but also one or more client tools that work with it. Moreover, such
clients must be usable by wide communities of researchers. Before developing a client, we, first,
needed to determine which user scenarios it should cover, and second, to investigate a suitable tool
already exists that can be used as DWAN client prototype. If it does not fully fit into the infrastructure,
the tool must be adjustable to fit the architecture and to cover the user scenarios.

The simplest and the most obvious user scenario can be called Login and Annotate. A principal4
logs in and sees the lists of annotations that were made by him and his colleagues earlier. These
annotations are sorted by their dates or by their headers. The principal finds a web page that he wants
to annotate, selects a fragment of the text to annotate, say, by marking it with some color, and attaches
a text note on this fragment. The text note should not clutter the main document. By clicking the
mouse, the annotation can be saved in the local (client’s) database as well as in the server database. It
should be visible on the web page as visualized by the client tool.

Second scenario. Editing and deleting. The principal must be able to edit the text note, to change
the header of an annotation, and to give different access rights (read, write, none) for another specific
principal.

Third scenario. Retrieving cached representations. The principal logs in, sees the list of annotations
and selects the one he wants to inspect in the context of the corresponding web page. He clicks on the
annotation in the list, a try a few times to reload the page, but the annotation does not appear. The
client cannot resolve the annotated fragment, possibly because the page has been updated and the
fragment has changed its position or has disappeared completely. The principal requests the front-end
to retrieve the remote cache and gets the cached representation of the page together with the other
annotations made on this page earlier. Indeed, it can be seen that the page has been updated. It is worth
to note that this scenario was a part of the DWAN demo during LREC 20145. The wiki-page of "Right
Sector" was used. “Right Sector” is a block of right and extreme-right groups in Ukraine. Due to
highly unstable situation in the country this page is updated very often. The reader can get the
annotations on this wiki-page and their cached representations if he has the Wired-Marker-based
DWAN front-end installed.

It turns out that by the time the DWAN developers team started to work on the client, the Wired-
Marker Firefox extension was the open-source the tool that could cover these scenarios, except that
there was no connection with the central database and the annotations made via other clients were not
retrievable. However code inspection gave the impression that this feature could be added. In the next
section we give the comparative analysis of the tools, which could have been used a DWAN client
prototypes, in more detail.

4 The term principal in general denotes either a user or a group of users. At present, user and principal are

synonyms for DWAN tool.

5 http://lrec2014.lrec-conf.org/en/

www.dasish.eu GA no. 283646

5

4. Annotation Tools

4.1 Potential DWAN-client prototypes: state of the art on September 2012

Before development of DWAN began, more than 40 available annotation tools had been
investigated to see if they could be (and to which extend) used as a starting point for the DWAN
client. Selection had been based on four criteria: tool’s functionality compliance with task 5.6
requirements, if it is open software, if it can be adjusted to communicate with the back-end, and
platform-independency. The Table 1 represents the results of the investigation.

Table 1. Annotation tools available by Autumn 2012

Tool State Open
software

Back-
end

access

Platform
(browsers) Functionality

A.nnotate active commercial
Annotating PDF, Word
and other document
formats on-line

AnnotationEdit active commercial Annotating video, audio

Annotator active Open source
Java Script yes

Library and plug-in
adding annotation
functionality to any web
page,
but one needs to alter its
html by running script
there

Annotea,
Amaya

Last
release jan
2012

Open source yes

Different
distributions
Linux, Windows,
MacOS

Written in C,
annotating html-web
documents

Awesome
Highlighter.

Not active
??
Web page
broken

Firefox
bookmarklet, or
add-on,
or by using the
tool ‘s website

Highlighting and
clipping chunks of text
on web-documents

Blerp

Not
active ??
Web page
broken

 IE PlugIn,
Firefox addOn

Support conversation on
top of the web page

BounceApp active Free app yes

Via their web
page
http://www.boun
ceapp.com/

Collaborative via
sending “screenshots” in
e.g. Facebook, Twitter
and Notable

The Commentor active

Commercial
with the base
plan free (3
collaborators)

Web-site,
you need an
account

Collaboration on visual
media projects

CritLink
Last
executable
from 2000

 yes
Unix

Annotating web-
documents in local
networks and on the
internet. Different color
means different sorts of
comment: support
(green, +), issue (red, -),
bcomment (bule, #),
query (orange, ?)

www.dasish.eu GA no. 283646

6

Crocodoc active

Commercial
with free
Standard
edition

yes

Annotated PDF, word,
Pwerpoint documents are
saved on Crocodoc
servers

DIIGO active
Commercial
with free base
account

yes Firefox, Safari,
IE

Annotating web pages,
saved to Diigo library,
Diigo account is needed

DrawHere active ??, one needs
an account Firefox, IE

bookmarklet
Drawing on web pages,
shareable

ThirdVoice Discontinu
ed in 2001 Browser Plug-in

Commenting web-sites,
anyone could write
anything; a lot of
criticism from the web
page owners

Wired Marker active Creative
commons yes Firefox

extension

Highlighting and putting
text notes on the
fragments of web
documents

Fleck

Tool of
2006,
Inactive?
their site
does not
exist any
more

http://delicious.com
/ active Need an

account no Bookmarklet

http://evernote.com/ active

Need an
account,
premium is
commercial

no Server, storage
of the documents

With “skitch” :
annotating pdf and
images, not web pages

http://webmarginali
a.net/ active Open source

Java Script yes

Firefox, Safari,
Chrome, IE,
For Moodle and
Open Journal
system

Highlighting html

http://www.yandell-
lab.org/software/m
was.html

active Need an
account no

Annotating genomes

TrailFire
Last
mentioned
in 2007

 Firefox, IE

Annotating (notes)
webpages,
categrozing annotated
web pages,
sharing

REddIT active Need an
account no server

Social networking
and news website

ReframeIT

obviously
not
available
any more,
only light-
weight
demo on
website,

www.dasish.eu GA no. 283646

7

add-ons
outdated,
integration
info
missing on
official
website

Scrible

under
developme
nt: free
public beta
version
available

premium, paid
edition under
development,
not yet
available,
license:
no
modifications
allowed

SharedCopy

State
uncertain.
According
to
http://en.wi
kipedia.org
/wiki/Web
_annotatio
n:
Developm
ent has
stopped.
Observe:
copyright
date of
official
website:
2012

ShiftSpace
Developm
ent has
stopped.

Skim active BDS license OS X

PDF reader and node
taker

WebNotes active

platinum
/pro/lite
version/,
account is
needed,
modification
under
permission

Adding notes to PDF and
web pages

www.dasish.eu GA no. 283646

8

JKN new?

http://info.jkn.com/firefo
x.htm , Light version
with available features:
web page annotation,
organize and search
notes, share notes via
email, twitter, and
permalink or any other
similar url found from
annotation evaluation
lists - they didn't work at
all!

Keeppy Server
http://www.keeppy.com/,
a social network,
relevant for our purposes

Loomp new?

No license
information,
short technical
information
and easy
access for
downloading
is missing.

One Click Annotator,
a WYSIWYG Web
editor for enriching
content with RDFa
annotations,
http://loomp.org/index.p
hp/home.html,

MarkITUp new?

MIT/GPL
licence, based
on former
jTagEditor,

needs jQuery
1.4.2 Javascript
library

Toolbox. Will never be
WYSIWYG editor.
http://markitup.jaysalvat.
com/home/,

NotateIT new? not open
sources

only for
Windows, seems
not to be
compliant with
other platforms

http://www.notateit.com/

WebKlipper new? commercial

As one can see, there were not that many open-software tools with suitable functionality available

and moreover, not many of them were well documented. At the end the decision was made to select
Wired Marker as a starting point for the DASISH web-annotator client.

Wired-Marker is a Creative-Common licensed Firefox plugin, with the possibility to change the
code under the agreement with its creators. It is platform independent since Firefox is one of the most

www.dasish.eu GA no. 283646

9

popular browsers installable at Linux, OS X and Windows. The access to the back-end database can
be adjusted.

Wired-Marker’s annotation functionality, though limited, still is in line with our goals: select a text
fragment of an arbitrary web-document, mark it with a specific color and add a text comment (an
annotation body). Aggregating Wired-Marker annotations in bundles is implemented by a collection
of pre-defined folders. Each folder contains annotations made by a certain marker (color). For
instance, in the red folder all annotations made by the red marker are collected.

It was possible to extend the Wired-Marker code so that the extension could communicate with the
server to retrieve an annotation from the database or send a created annotation to the back-end.

Another tool, called PundIt can do more than Wired-Marker, but unfortunately at the time when
DASISH task 5.6 team had to make a decision, it was not yet available and it got an Open Source
license only after the development of DWAN had already started.

4.2 Developments after September 2012

PundIt allows annotating images and their fragments. Moreover the tool allows aggregating
annotations into notebooks that can be viewed as a generalized version of the “cultured folders”
aggregation facility of Wired Marker. PundIt has a feature, which in some cases may be considered as
an inconvenience, and thus it gives more points to Wired Marker because Wired Marker does not have
it. While creating an annotation, a user must think in terms of a triple Object-Predicate-Subject, for
instance “Karl Marx” (subject) “talks about” (predicate) “Kapital” (object). “Karl Marx” denotes not
only a piece of text but it is rather a wider notion, an item. Under this item one can collect texts,
images or their fragments representing Karl Marks on the web pages.

ReframeIt has appeared as a Firefox add-on for commenting web pages and sharing it via
Facebook, Twitter, Blogger, FriendFeed, Wordpress, RSS, HTML, e-mails.

5. DASISH Web Annotator (DWAN)

5.1 Framework architecture

The DWAN design assumes multiple clients working together with a single back-end consisting of
a database and a Representational State Transfer (REST) web service that is implemented in Java. It
allows annotating any web-accessible content, linking data, creating relations, or providing feedback.
Its novelty is that the created content and target-annotated documents are stored in a database that can
be shared with other tools in the framework (see Figure 2). At the moment the storage for annotations
and related resources is provided by the DASISH partner TLA-MPI6 that currently runs the back-end.

DWAN is also especially meant to cater for domain specific tools such as within linguistics, that
through their use of linguistic data formats can annotate specific linguistic items such as lexical items,
annotation tags etc. Tools for other domains can be integrated without problems, the data-model
underlying the DWAN framework is discipline agnostic.

6 The Language Archive, Max Planck Institute for Psycholinguistics, http://tla.mpi.nl/

www.dasish.eu GA no. 283646

10

Figure 2 The DWAN Framework in more detail

5.2 DWAN’s Data Model and its connection to Open Annotation Model

The Annotation class is the core of the model (see Figure 3). The relations Annotation - Target,
Target - Source, Target - Cached Representation closely follow the Open Annotation (OA) standard.
The Open Annotation Core Data Model specifies an interoperable framework for creating associations
between related resources, annotations, using a methodology that conforms to the Architecture of the
World Wide Web7 (W3C). In OA an Annotation is considered to be a set of connected resources,
typically including a body and target, where the body is somehow about the target. The full model
supports additional functionality, enabling semantic annotations, embedding content, selecting
segments of resources, choosing the appropriate representation of a resource and providing styling
hints for consuming clients.

An annotation in DWAN, i.e. an object of the class Annotation, is a structure that contains
necessary information about the user's annotation. In particular it contains the annotation's identifier,
the reference to the owner and the time of creation. An owner is either the principal who has created
the annotation or a principal to whom the ownership has been assigned.8

Besides the owner, an annotation has readers and writers. As one can expect, a reader is a user that
can read the annotation, and a writer can also add changes to it. Thus, a registered principal can be
related to an annotation by means of one of three access modes: reader, writer, none.

An annotation can have one or more targets. A target (i.e. instantiation of the Target class) contains
the reference to the web-document (a source) and the precise description of the document's fragment,
which is actually annotated. A target can also be related to one or more cached representations. A
cached representation is a stored record that contains representations of the relevant parts of the
annotated document together with the descriptions of their respective annotated fragments.

7 http://www.openannotation.org/spec/core/

8 Recall, that a principal is ether a user or a group of users, and for the current version of DWAN user and
principal are synonyms. Creating user's groups is the matter of the future work.

www.dasish.eu GA no. 283646

11

The semantics of an annotation is given in its body. In the implementation a body is an arbitrary

text or an XML text. In both cases a client must give a precise MIME-type. For instance, a body can
be a plain text, which describes a specific relation (like contradiction) between two fragments of some
web-document. In this case the body should contain references to the targets that represent these two
fragments and the document. Annotations can be gathered in notebooks.

DWAN model has been designed with Open Annotation in mind, and therefore the mapping
between DWAN-model components and open-annotation concepts is built in a natural way. The
targets of DWAN model correspond to the instances of the open annotation class
oa:SpecificResource, see Figure 4. Multiple target sources are represented as instances of
oa:Composite. Each of oa:item of the composite is either an instance of oa:SpecificResource
or oa:Composite.

A cached representation of an annotated target source is referred via the target’s state, see the
figure above. The properties oa:hasState and oa:cachedSource are used. The metadata of the
cached representation are presented via dc-properties and dctypes: mimeType is presented as
dc:format, tool is presented as dc:publisher, type is presented as dc:description; note that
dc:type cannot be used here because its value must (recommended) be from the DCMI Type
Vocabulary9; therefore, e.g. "screenshot" would not be a good value here. Moreover, a cached
representation must have one of the dctypes as rdf:type, and it must be compliant with dc:format
value. For instance, if dc:format is "image/png" then the corresponding rdf:type must be
dctypes:Image.

9 http://dublincore.org/documents/2010/10/11/dcmi-type-vocabulary

Figure 3 DWAN Data Model

www.dasish.eu GA no. 283646

12

A principal is an agent, and for agents Open Annotation recommends to use foaf namespace, see

http://xmlns.com/foaf/spec/. This data model is designed for social networks, and in principle suits
DASISH schema for a user and permission lists. There is one little technical inconvenience: foaf
agents do not have a property that can be used to define permission types (reader, writer) directly. For
now, permissions are represented via property foaf:topic_interest. For an example, see Figure
5.

Figure 4 Example of an OA representation. Target

www.dasish.eu GA no. 283646

13

An annotation body in DASISH can be any correct XML or a text. A generic way to present such
bodies in Open Annotation is to consider a body, which (typically) has attributes and elements, as
instances of oa:Composite. Any element and any attribute of the body becomes an oa:item of the
body. If an element has sub-elements, it is an instance of oa:Composite as well, etc. An attribute or an
element with now sub-elements has one of the dc:types and one of the dc:formats, and possibly
additional relevant properties, such as cnt:chars for text values.

5.3 DWAN Back-end

Architecture in a nutshell

The core of the back-end is the Postgres10 database where all annotations and related structures are
stored, together with information about principals. The task of the back-end software is to connect a
client with the database. The back-end software accepts a request from the client tool, validates it, and

10 http://www.postgresql.org

Figure 5 Example of an OA representation. Principal

www.dasish.eu GA no. 283646

14

translates it into database queries. The back-end software translates the database content and sends it
to the client.

The back-end-software is a multi-layered project. Its outermost layer is generated by the Jersey
Framework11 which is responsible for connecting database-managing software with the web-server
(e.g. Tomcat12) which hosts the database. The Jersey shell is not written by DWAN developers, but
used as a library of program modules.

The remaining layers are designed and implemented by DWAN developers in Java. Next to the
Jersey shell there is a package containing REST methods which accept client requests in the form of
http-strings, possibly together with XML-bodies for more complex requests. For instance when a
client has to send it as an XML file for posting an annotation. This XML file is deserialised within the
POST-annotation REST method into a Java instance of the class Annotation, using JAXB
technology13. The other way around, REST methods also translate database responds into interpretable
by the clients presentations. For instance, when getting an annotation, the respond from the database,
which constructed as a java object, is serialized by the GET-annotation REST method into an XML
file, which is sent to the client. The client is responsible for converting it into a user-friendly form.

REST methods do not perform calls to the database directly. A REST method uses Data Access
Objects (DAO’s) that take a REST request together with its parameters and translate it into a Postgres
database command. For instance, a GET request is typically translated into a SELET command of
PostgreSQL. POST and PUT requests are translated into INSERT and UPDATE commands
respectively. To be precise, a REST method does not call DAO objects directly but uses an
intermediate layer, a dispatcher class. This is because a REST request cannot be interpreted as a
single PostgreSQL command but is a chain of such commands. For instance, when getting an
annotation, first users access rights must be checked via a separate DAO. If the logged-in user has
“read” rights for the requested annotation, then GET-annotation request is to be fulfilled. Otherwise,
the GET-annotation method returns 403 status: access forbidden. Thus, the intermediate dispatcher
object is responsible for turning a REST request into a sound chain of the calls of the necessary DAO
objects. The DAO layer is the innermost layer of the back-end software.

11 https://jersey.java.net

12 http://tomcat.apache.org

13 https://jaxb.java.net

Figure 6 DWAN backend Architecture

www.dasish.eu GA no. 283646

15

Database and Database Access Objects

A Postgres relational database provides storage for all the core information resources: annotations,
targets, cached representations, principals and notebooks. The database contains five main tables; each
of them stores a corresponding type of resource. A column in a table represents an attribute in the
corresponding resource class. For instance, any resource class has an attribute id (an identifier of type
xml:id). This identifier is a part of the URI through which a DWAN client accesses an instance of the
resource. URI has the form <service-uri>/<resource/<id>, e.g.

 https:/dasish.mpi.nl/api/annotations/e3c834f0-34c4-11e3-aa6e-0800200c9a66.
Each of five resource tables has its column external id that stores public identifiers. From the

programming point of view an external identifier is a UUID string generated by the server when a
resource, e.g. an annotation, is added to the database. Annotation bodies are stored in the table
annotation in the column body.

Furthermore, there is a number of join tables representing the relations between the resources,
which are described as relations between the resource classes. These relations create a hierarchy
between the resources. Indeed, any of the relations can be abstracted to "refers" so that we have that a
principal refers to an annotation or a notebook, an annotation refers to a target and a target refers to a
cached representation. As one can see, cached representations have the lowest position in this
hierarchy. This hierarchy induces a "cascading" mechanism of adding and deleting resources in the
database. For instance, removal of an annotation from the database triggers the removal of its targets,
except for the ones to which other annotations still refer. In turn, removal of the targets triggers
removal of all the corresponding cached representations unless some other targets refer to a cached
representation under consideration.

Database Access Objects (DAO's) are used to programmatically access the data in the database.
The DAO mechanism allows to form and call SQL database commands like SELECT, UPDATE,
INSERT, and DELETE from Java methods. Methods for basic manipulations over resources
(retrieving, updating, adding and deleting) are defined in the corresponding DAO java interface. For
instance, the AnnotationDao.java interface lists the signatures of all necessary basic operations over
the table annotation and the join tables annotation-targets and annotations-principals-permissions. By
a basic operation we mean an operation, which demands a single SQL statement. The interfaces are
implemented using SpringDAO14, which utilizes a JDBC15 connection to access the data store. For
instance, the add annotation method is implemented in JdbcAnnotationDao.java class as a single java
method. As one expects, this method forms and calls an INSERT command for the table annotation.

Due to the presence of join tables there must be a mechanism that takes care of correctly
sequencing basic operations. For instance, consider a complete procedure of deleting an annotation.
The annotation's internal database identifier occurs in three join tables: annotations-targets,
annotations-principals-permissions, and notebooks-annotations. If the annotation record is deleted
from the table annotations before the corresponding rows in the join tables are removed, then the join
tables have references to the non-existing annotation (via its internal identifier), and the database will
signal an integrity error. To prevent such errors we have introduced a java class DBDispatcher.java,
which calls the methods from the DAO implementations in the correct order. Moreover it triggers
cascading of the operations when necessary. For instance, complete deletion of an annotation amounts
to purging the join tables first, then deleting the corresponding record in the annotation table, and then
triggering removal of the annotation's unused targets.

Auxiliary resource-info classes generated by JAXB for the corresponding xml types TargetInfo,
AnnotationInfo, NotebookInfo contain references to the corresponding resource plus the most
important information about the resource.

14 http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/dao.html

15 Java Database Connectivity

www.dasish.eu GA no. 283646

16

REST Application Programming Interface

The server and a client communicate with each other by means of a REST Application
Programming Interface (API). A REST API is a collection of requests that the server must recognize
and respond to, in an appropriate way. Requests are made by means of a URL starting with the server's
location specified by the type of requested resource and its identifier when applicable.

Requests of method type GET are used to retrieve information about resources stored in the
database. For these GET requests the URL generally contains the identifier of a requested resource (as
a path request parameter). For instance, it can be the identifier of an annotation or the identifier of a
cached representation. Passing a principal identifier as a parameter is not required, because the active
principal is known from the session via an authentication procedure e.g. provided by Shibboleth,
which is a “an open-source project that provides Single Sign-On capabilities and allows sites to make
informed authorization decisions for individual access of protected online resources in a privacy-
preserving manner” 16. A PUT (resp. DELETE) request is used to update (resp. delete) the resource of
which the identifier is given as a request parameter. Only the owner has DELETE rights. POST is
performed when a client wants to create a new annotation. Most information necessary to fulfill a PUT
or POST request is not given as a request parameter, but given serialized in the request body. For
instance, to submit an annotation a client needs to fill in the request body with the XML-element
corresponding to class Annotation. All the information necessary to create an annotation should be
placed in the corresponding nodes of the XML-element.

If a POST (PUT) request is sent then in the case of success the server returns the serialized
information about the added (resp. updated) resource together with a standard HTTP response code. If
an annotation is posted or updated the server returns an XML document of type envelope, which
contains a serialization of the resource together with the list of actions which client should perform to
complete the request in a sound way. For instance, if an annotation is posted so that for one of its
targets there is no cached representation in the database the list of action contains reminder to post a
cached representation for the corresponding target id.

In the case of failure of the request, the corresponding error status (with the detailed message when
necessary) is returned, e.g. 401 Unauthorized access if the principal is not logged in (except for the
log-in service).

Before describing the requests in more detail we give the list of used notations in Table 2.

Table 2. Notations

notation meaning
aid annotation identifier
cid cached-representation identifier

datetime date and time, including time zone,
as defined in http://www.w3.org/TR/xmlschema-2/#dateTime

nid notebook identifier
prefix the prefix of a namespace
tid target identifier
text some text
prid principal's id
URI URI, as defined in http://tools.ietf.org/html/rfc3986
Principal a user (person) or a group of users

16 http://shibboleth.net/

www.dasish.eu GA no. 283646

17

In the tables below all the requests are listed and the corresponding server responses are described.

Principal realm

Table 3. API for resource Principal

Resource Description Return (xml)
type

GET api/authentication/login
Redirects to the login page, if the
principal is not logged-in, or
messages otherwise.

String message

GET api/authentication/principal Returns logged-in principal. Principal

GET api/principals/prid Returns principal with the given
prid. Principal

GET api/principals/prid/current Returns true if the prid is logged-
in; false otherwise.

CurrenPrincipalI
nfo

GET
api/principals/info?email=user@mail.com

Returns the principal with the given
e-mail address. Principal

GET api/principals/admin Returns the string with the name
and the e-mail of DWAN admin. String

Annotations

api/annotations

Table 4. API for resource Annotation. Part A.

Resource Description Return (xml) type

GET api/annotations?
link=URI&

text=text&
access=[[read, write]]&

owner=prid&
after=datetime1&
before=datetime2

Returns the annotations filtered
by the request parameters list of
info-s of the annotations to which
the logged-in principal has read
(resp. write) access. Their links
contain uri, their bodies contain
text. Moreover, these annotations
are created between datetime1
and datetime2. If the parameter
link is omitted, then considers all
annotated objects to which the
principal has read/write access.
The default datetime1is 01 Jan
1970, 00:00. The default
datetime2 is today.

AnnotationInfoList

POST api/annotations
Adds a new annotation by picking
up its XML-serialization from the
request body.

Envelope
AnnotationResponseBody

www.dasish.eu GA no. 283646

18

In the GET request for the future we may add a namespace parameter, ns . It may be used to make
queries on XPath for xml annotation bodies. For instance, the following query

api/annotations?ns=rdf:http%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-
ns%23&ns=owl:http%3A%2F%2Fwww.w3.org%2F2002%2F07%2Fowl%23&xpath=//owl:sameAs[rdf:resourc
e="example:2"]

is used to find an annotation with the body:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#">  
<owl:sameAs rdf:about="example:1"
rdf:resource="example:2"/>
 </rdf:RDF>

api/annotations/aid

The table below describes requests in which the logged-in principal has authorized access to aid.
Authorized access means that the principal has read access for GET-methods and write access for
PUT body methods. Any logged-in principal can POST an annotation. To change permissions of the
annotation the principal must be the owner of the annotation. If the principal tries to perform a request
for which (s)he does not have privileges, the status 403 Forbidden is returned.

www.dasish.eu GA no. 283646

19

Table 5. API for resource Annotation. Part B.

Resource Description Return (xml) type

GET api/annotations/aid Returns the annotation that has this
aid. Annotation

GET api/annotations/aid/targets Returns the list of the tid-s of all
the targets of aid. ReferenceList

DELETE api/annotations/aid
Removes aid from the database,
together with all its targets to which
no other annotation refers

String messaging how
many rows have been
deleted (should ne 0 or 1)

PUT api/annotations/aid

Updates the annotation with aid.
For instance, it is used when prid
wants to correct typos in the
annotation body and change
annotated fragments. (See PUT
api/annotations/aid/body for
correcting body only.) The
serialized representation of the
updated annotation is given in the
request body.

Envelope
AnnotationResponseBody

PUT api/annotations/aid/body
Updates the body of the annotation
aid. Used e.g. for correcting typos
in the text part.

Envelope
AnnotationResponseBody

GET
api/annotations/aid/permissions

List of permissions for the aid. In
user is not included in the list his
access is defined by public
attribute.

PermissionList

PUT
api/annotations/aid/permissions

Updates the permission list. New
permission list is given serialized in
the request body.

Envelope
PermissionResponseBody

PUT
api/annotations/aid/permissions/prid

Updates the access mode for the
annotation aid and principal prid.
New access mode is given in the
body of the request.

String messaging how
many rows have been
updated/added
(should be 0 or 1).

www.dasish.eu GA no. 283646

20

Targets

A target represents a specific fragment of a specific version of an annotatable source. An instance
of the Target and TargetInfo type has a string attribute version, which is to be filled by a client when
an annotation is posted (or updated) and sent to the server. An Annotation type contains target-info
elements that keep information about the annotation targets.

api/targets

Table 6. API for resource Target

Resource Description Return (xml) type
GET api/targets/tid Returns the target with a given id. Target

GET
api/targets/tid/versions

Returns the lists of the URIs of all the
sibling-versions of the tid, that is targets
related to the same source (the same link).

ReferenceList

POST
api/targets/tid/fragment/
fragmentdescriptorstring/cac
hed

It is a 2-part POST, with the request body
consisting of serialised
CachedRepresentationInfo instance, and a
single file representing the chacher
representation itself: HTML document,
image, etc. multiple files must be
archived.

CachedRepresentationIn
fo

DELETE
api/targets/tid/cached/cid

Removes connection tid-cids. The cached
representation is removed from the
database as well, unless there are more
references to this representation.

String messaging how
many rows in the junction
table have been removed,
should be 0 or 1

www.dasish.eu GA no. 283646

21

api/cached

It is possible to store the cached representation not only of the fragment precisely corresponding to
annotation's target but also of a larger fragment and even of the entire annotatable document. For
instance, the DWAN client sends to the server the entire DOM of the annotated page, when an
annotation is created. The relation between the target and its cached representation should be
completed by a fragment descriptor pointing to the position of the annotated fragment in the cached
representation. For instance, for a screenshot it may be an (x,y) -position of a left-upper corner of the
annotated fragment and the size of a rectangle.

Table 7. API for resource Cached Representation

Resource Description Return (xml)type
GET

api/cached/cid/metadata
Returns the meta-information of cid if
it exists. CachedRepresentationInfo

GET
api/cached/cid/stream

Returns the file (stream), which is the
cached representation with cid if it
exists.

Stream, it is up to the client to
interpret it correctly

GET
api/cached/cid/content

Returns the image file, which is the
cached representation with cid if it
exists.

Image

www.dasish.eu GA no. 283646

22

Notebooks17

api/notebooks

Table 8. API for resource Notebook

Resource Description Return (xml) type

GET api/notebooks
Returns notebook-infos for the

notebooks accessible to the logged-in
principal.

NotebookInfoList

GET api/notebooks/owned
Returns the list of all notebook
references owned by the logged-in
principal.

ReferenceList

GET
api/notebooks/nid/readers

Returns the list of prid-s who allowed
to read the annotations from the
notebook.

ReferenceList

GET
api/notebooks/nid/writers

Returns the list of prid that can add
annotations to the notebook. ReferenceList

GET
api/notebooks/nid/metadata

Returns all metadata about a specified
notebook nid. Notebook

GET api/notebooks/nid?
maximumAnnotations=

limit&
startAnnotation=offset&

orderby=orderby&
orderingMode=[[1,0]]

Returns the list of all annotations aid-s
contained within a Notebook with
related metadata. Parameters: nid,
optional maximumAnnotations
specifies the maximum number of
annotations to retrieve (default -1, all
annotations), optional startAnnotation
specifies the starting point from which
the annotations will be retrieved
(default: -1, start from the first
annotation), optional orderby,
specifies the RDF property used to
order the annotations (default:
dc:created), optional orderingMode
specifies if the results should be sorted
using a descending order desc=1 or an
ascending order desc=0 (default: 0)

ReferenceList

PUT /notebooks/nid
Modifies metadata of nid. The new
notebook’s name must be sent in
request’s body.

Envelope
NotebookResponseBody

PUT /notebooks/nid/aid Adds an annotation aid to the list of
annotations of nid.

Envelope
NotebookResponseBody

POST api/notebooks/ Creates a new notebook. Returns the
nid of the created Notebook in

Envelope
NotebookResponseBody

17 The feature is implemented, however testing is not completed and it is not used in the current

DWAN front-end.

www.dasish.eu GA no. 283646

23

Resource Description Return (xml) type
response’s payload.

DELETE
api/notebooks/nid

Deletes nid. Annotations stay, they
just lose connection to nid . https status, no xml

POST api/notebooks/nid

Creates a new annotation in nid. The
content of an annotation is given in the
request body. In fact this is a short cut
of two actions: POST api/annotations
and PUT
/notebooks/nid?annotation=aid.

Envelope
NotebookResponseBody

5.4 DWAN front-end(s)

Wired-Marker based front-end

The original Wired-Marker software is freeware developed in Japan as part of the Integrated
Database Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology
(development code name ScrapParty) for supporting the construction of databases. The tool’s concept
and design are credited to BITS Co., Ltd.18 and Prof. Okubo.

Wired-Marker is licensed under a Creative Commons License. This includes a “No-Derivative
works” condition, which means that the modified code cannot be distributed. According to the
special agreement between BITS Co., Ltd. and the MPI for Psycholinguistics, this condition has been
waived.

Wired-Marker as well as Wired-marker-based DWAN client, is a Firefox extension that can be
used with Firefox versions greater than 2.0. The DWAN client can be downloaded as an XPI19 file
from the DASISH GitHub repository at https://github.com/DASISH/dwan-client-
wiredmarker/releases. A more detailed description on how to install the extension can be found in the
Manual, see the Appendix of the presented deliverable. After completed installation of the add-on, a
new menu item called DASISH Web Annotator is added to the Firefox menu bar.

The source code is written in JavaScript and contains XUL files as well. XUL stands for XML
User Interface Language, which is a user interface markup language developed by Mozilla. XUL is
implemented as an XML dialect; it allows for graphical user interfaces to be written in a similar
manner to web pages. One of the possibilities to develop Firefox add-ons such as Wired-Marker is to
use the FoxBeans plug-in for NetBeans 7.0 IDE. The plug-in adds a new project type Mozilla/Firefox
add-on that can be used for extension development. Another common option is to work with a
development setup that uses an extension proxy file locally. In the case of the Wired-Marker extension
code, the jar structured chrome.manifest file also needed to be rewritten and adjusted to the local
chrome paths. We recommend a developer to read https://developer.mozilla.org/en-US/Add-
ons/Setting_up_extension_development_environment on how to set an extension development
environment.

From the user’s point of view, the original Wired-Marker extension is a highlighting tool that
allows marking fragments of a web document with different colors. The tool (as well as the based on it
DWAN client) provides a default finite collection of colors (“markers”) with which a user can mark
fragments of web-documents. An annotated fragment can be a text fragment or an image inserted in
the document. The descriptions of the marked fragments (annotations) are collected in folders

18 BITS Co., Ltd., http://www.bits.cc

19 XPI stands for Cross Platform Installer (file extension).

www.dasish.eu GA no. 283646

24

according to their colors. These folders are accessible via standard folder menu of the user interface. If
the default collection of markers does not suffice the user can create his own marker by picking up a
fresh color from a rich palette provided by the DWAN client on user’s demand. For instance, one can
create a purple marker (purple is not a default DWAN marker), and annotate with this color fragments
about the family of Picasso, from various web pages. Then all these annotations are contained in a
purple folder.

An annotated fragment is preserved not only in the local client database that is connected to the
extension but also sent by the DWAN client as an XML file to the back-end database where it is
stored. The DASISH developers have implemented synchronization of the local and the back-end
database. One of the aspects of this synchronization is that one of the provided default markers, the
light-yellow one, plays a special role. By now it corresponds to the annotations created by other client
instances. The client retrieves these annotations from the server’s database and places them in the
folder called incoming. In a sense, it is inconvenient because the user cannot see the colors of
annotations made by the others. It is due to the fact that the original Wired-Marker was not designed
as a collaborative annotating tool.

DWAN-developers team is working on possibility to retrieve the original colors of annotations
created by other client instances. In fact, a DWAN client does send to the server the color information
when an annotation is created, and this information is saved in the database. At the moment the
DWAN client cannot interpret the color information when it retrieves the annotation from the
database. The server transfers the color information on GET request of the client.

Technically speaking, the annotated fragment is represented by the XPointer link that consists of
the link to the page and the fragment descriptor defining the location of the fragment in an original
document. The information about the color is represented as a CSS property as part of the fragment.

Other users can view a particular user’s annotation in their DWAN clients simply by reloading the
annotated page. As stated above, an annotation made by remote instances of the DWAN client is listed
in the directory of incoming annotations in the sidebar on the left-hand side of the browser window.
The corresponding annotated fragment appears as a light-yellow cultured fragment.

In order to access the database and thus use DWAN and its functionality (e.g. view and post
annotations), one needs to log in. DWAN offers two ways of authentication, firstly via Shibboleth and
secondly via Spring basic authentication. If the user’s institution is part of the DWAN connected
Identity Federation20 (s)he can use her/his institution credentials by choosing the institution name from
the list of Identity Providers. Otherwise, the user can create an local account for the DWAN back-end
by filling in and submitting the registration on the page accessed by the menu “DASISH Web
Annotator -> Settings -> Server” and specify the desired server. Choose the default option
https://myserver/ds/webannotator/ for Shibboleth authentication and choose
https://myserver/ds/webannotator-basic/ for the basic authentication service.
The user needs to set the back-end server URL via the DWAN-client menu, in case the intended server
differs from the default one. This can be done in the Settings dialogue window (DASISH Web
Annotator>Settings…>Server), where a user-specified back-end address can be inserted21.

When a user creates an annotation, the client sends it to the server together with a cached
representation of the annotated page (in the moment of annotation). The user can request a cached
representation later, for instance if the client cannot deliver the annotation because the page has been
changed and the fragment cannot be resolved. Please, consult the manual for more details. The cached
representation is sent as a serialized DOM for the HTML document. For images only links are sent.
The next step in future development would be to zip the HTML, images, CSS and JavaScript for the
cached representation. This is done in Wired-Marker, but not posted to the back-end for now.

20 Currently DWAN is connected to the CLARIN Service Provider Federation,

http://www.clarin.eu/content/service-provider-federation

21 At the moment the default server is https://lux17.mpi.nl/ds/webannotator. The user may set
https://lux17.mpi.nl/ds/webannotator-basic as a user-specific server if he wants to follow basic-authentication
procedure.

www.dasish.eu GA no. 283646

25

It is possible to annotate an image, but not an image fragment. The mouse pointer must be placed
on the image, and the remaining steps are the same as for annotating text. The title and the annotation
body are assigned automatically, with the annotation body getting the name of the image file. The title
and the body can be edited later.

To edit an annotation, select it in the list on the left-hand side of the browser window. Click the
right mouse button and select Properties in the popped-up menu. Selecting Properties triggers a pop-
up form for editing the annotation. The title can be edited in the Brief Overview tab, and annotation
body can be edited in Annotation tab.

In the original Wired-Maker, it is not possible to assign and reassign read, write and none access
rights for a particular user given a particular annotation. However, the DWAN framework assumes
dynamic access rights. When a DWAN client creates an annotation, all registered principals except the
creator (owner) get read access. The owner has write access and can change the rights of other users.
Additional web pages from the back-end server allows the owner to reassign the rights for a particular
user and an annotation, or to change the public access mode for a given annotation. On principal’s
request, the back-end can present one of two web pages allowing the owner of an annotation to change
the annotation’s access modes, which can be read, write or none. The first page allows changing the
access to a specific annotation for a specific principal. The second page is used to change the public
access mode at once, that is, all registered principals get write access.

Updating access modes is implemented through web pages issued by the back-end because
changing access rights is not implemented in Wired Marker itself, and adding this feature to DWAN
Wired-marker-based front-end would be quite time consuming.22

While working on the transformation of Wired-Marker into a DWAN client, the DWAN
development team has established that four of Wired-Marker’s drawbacks cannot be fixed within a
reasonable amount of time:

• first, the original Wired-Marker does not provide multiple-target annotating; in other words, a
user can put a text note exactly on one fragment of the source page; for instance, it is not
possible to annotate two text fragments simultaneously, and to interrelate and link them with
the remark that they contradict each other;

• the second drawback has already been mentioned: an annotation read from the database loses
its original color while being interpreted by the client23;

• thirdly, fragments of images cannot be annotated by Wired-Marker, but only the whole image;
• In the fourth place, adding notebooks would demand significant refactoring of the original

code; to a certain extent, cultured directories of the local folder can be seen as notebooks.

Summing up the features that have been added to (or changed in) Wired-Marker to adjust it to
DASISH requirements:

Design Customization of existing visual features (e.g. sidebar, top menu,

right-click menus, add-ons manager view), customization of visual
features for extended functionality (login/logout button, extended
Settings menu for back-end configuration).

Functionality GET, PUT (update), POST, DELETE annotations; POST and GET
for cached representations; authentication (login/logout).

Miscellaneous Rewrite of chrome.manifest for development in extension proxy
file environment; extension code updates to ensure support by
current Firefox versions (Wired-Marker only supports Firefox
versions 2.0 – 10.*, http://www.wired-marker.org/en/index.html);

22 The redirection to these pages was under implementation in the front-end by the time the deliverable was
written.

23 The client developers are working on a fix for this problem at the time of writing of this document.

www.dasish.eu GA no. 283646

26

hyperanchor (http://www.hyper-
anchor.org/en/technical_format.html) mapping to xpointer (used on
POST/GET) (http://www.w3.org/TR/xptr-
framework/, http://www.w3.org/standards/techs/xpointer#w3c_all);
setting updated annotation bodies.

Front-end for ELAN

An ELAN front-end for the DWAN framework is being worked on in the context of the CLARIN
NL24 ColTime project25 (in progress). ELAN is a multi-media annotation software tool and the goal of
the project is to allow ELAN users to exchange messages or create comments consisting from a
reference to a particular fragment of a media file and a message text. Such comments or messages are
mapped on the DWAN annotation concept. Since ELAN already had the notion of linguistic
annotations, in this section we will use the word comment for DWAN annotations to avoid confusion.

With ELAN, users can make annotations associated with specific time spans of the media file. This
is organized in so-called tiers. Within each single tier, the annotations cannot overlap, but between
different tiers they can. Users can organize tiers so as to use different tiers for different types of
annotations. For instance, one tier could contain annotations pertaining to pitch level, while another
contains information about hand gestures. However, there was until now no specific support to
comment on the ELAN annotations themselves. For instance, researchers might want to coordinate
their work, or review each other's work. Sometimes the tier system of ELAN would be used creatively
for this purpose. This use however has several drawbacks. For example, annotations on a single tier
can't overlap each other time-wise and multiple comments referring to the same period become
cumbersome.

On the other hand, the DWAN back-end is an ideal vehicle to store these comments: it is based on
comments which refer to some URL, or even more specifically, to some fragment of the target by
means of a fragment identifier.

To use this principle, ELAN creates a unique resource identifier for the files it processes: an URN
such as urn:nl-mpi-tools-elan-eaf:59d08e6a-5cd9-4aed-8aa4-7074c270e635. This is necessary because
ELAN works on files locally stored on a user's computer, and that therefore have no universally
accessible URL.

On the other hand, once an ELAN file is imported into an archive, it will be assigned a stable URL
and can then be viewed using the ANNEX web tool.

Front-end for ANNEX

ANNEX is an open source online visualizer for time-aligned annotation files, primarily targeted at
the EAF (ELAN Annotation Format) format just as ELAN. It provides an ELAN like web-interface,
where users can visualize and browse trough the annotations of a time-aligned annotation file in the
same fashion as in ELAN. ANNEX will work in a standard (Flash enabled) web-browser.

As is the case with the ELAN front-end, ANNEX interaction with the DWAN is being developed
in the context of the COLTIME project.

Given that ANNEX handles the same type resources as ELAN and also uses the same linguistic
annotation model, in the ANNEX’s context, DWAN annotations are also referred to as comments.

24 http://www.clarin.nl

25 http://www.ru.nl/sign-lang/projects/coltime/

www.dasish.eu GA no. 283646

27

However, ANNEX is only a visualization tool for archived materials and currently does not offer
any functionality to create annotations. Still users would like to make and exchange comments with
respect to archived media and annotation files independent of the possibility to actually add linguistic
annotations.

Using the DWAN back-end to store, search and retrieve such comments is easier than in the
ELAN case, ANNEX already relies on URLs and part identifiers to fetch its data, and specifically
ANNEX’s URLs accept time period (‘time=’ and ‘duration=’) and tier specification (‘tier=’)
parameters are already available. This also eliminates the need for the EAF URN described in the
ELAN section of this document.

5.5 Testing Procedure

The Software Test Plan (STP) is designed to prescribe the scope, approach, resources, and schedule
of all testing activities. The detailed testing plan, which can be found at
https://github.com/DASISH/dwan-testing, identifies the following:

• the items to be tested,
• the features to be tested,
• the types of testing to be performed,
• the personnel responsible for testing,
• the resources and schedule required to complete testing, and
• the risks associated with the plan.
Testing was performed at several points in the life cycle, as the product is developed. Testing is a

very “dependent'” activity. As a result, test planning is a continuing activity performed throughout the
system development life cycle.

The scope of DWAN testing activity includes:
• server API for DWAN release 1.0 server side software,
• DWAN release 1.0 client side software for Firefox browser,
• DWAN User Manual.
The scope of this testing activity does not include: DWAN release 1.0 server side software, and

DWAN development documentation Requirements.
Testing consists of several phases, each phase may or may not include testing of anyone or more of

the following aspects of the DWAN software (listed alphabetically): availability, content,
functionality, performance, reliability, scalability, security, usability.

The API for the server side software is tested separately with several Python scripts. The client side
software is tested manually by following some basic test scenarios.

Testing is performed on the client side with operating system Windows 7, Windows 8, Mac OS X
or Linux. For testing of the browser plugin the latest Mozilla Firefox version (29 or later) is used. For
the testing of the server API the Python programming environment with the unit testing framework
and the package Requests 2.3.0 https://pypi.python.org/pypi/requests/) is used.

All discovered software anomalies during the testing are registered in the project issue management
pages under the GitHub:

• https://github.com/DASISH/dwanclientwiredmarker and
• https://github.com/DASISH/dwanback-end .

For back-end the testers have implemented a python script what tries to perform several API

operations (https://github.com/DASISH/dwan-testing/tree/master/scripts).

www.dasish.eu GA no. 283646

28

6. Social Sciences and Humanities: Results and Outlook

Annotation is an activity which runs throughout all scholarly work in all disciplines. The purpose
of this section is to give context to the DASISH Web ANnotation framework (DWAN) annotation
tool, to explore how annotation works in the broader context of scholarly communication in the
humanities and Social Sciences (HSS), and to set out a series of scenarios which users in these
domains are likely to encounter when faced with tasks requiring annotation and related activities.

This review will comprise of three main elements:
• a list of software annotation tools drawn from the Tools e-Registry for E-Social science,

Arts and Humanities (TERESAH) registry, which is the primary output of DASISH Work
Package 2;

• a mapping of these tools’ functionality and, where it can be determined, their usages to the
typology proposed by Dunn and Hedges (2012)26 in their report on crowd-sourcing in
cultural heritage and the humanities;

• and a set of user scenarios based on this analysis.

6.1 List of annotation tools used by the HSS community

The list of more than 50 tools has been generated from a simple search using the keyword annot*
in the Tools e-Registry for E-Social science, Arts and Humanities (TERESAH) registry, currently
under development for WP2. Here we briefly describe ten of them which form our point of view look
the most promising as potential DWAN front-ends:27

• ANNIS is an open source, versatile web browser-based search and visualization architecture
for complex multilevel linguistic corpora with diverse types of annotation. ANNIS, which
stands for ANNotation of Information Structure, has been designed to provide access to the
data of the SFB 632 ("Information Structure: The Linguistic Means for Structuring Utterances,
Sentences and Texts"). Since information structure interacts with linguistic phenomena on
many levels, ANNIS2 addresses the SFB's need to concurrently annotate, query and visualize
data from such varied areas as syntax, semantics, morphology, prosody, referentiality, lexis
and more. For projects working with spoken language, support for audio / video annotations is
also required. In the SFB, a number of different projects collect and annotate data according to
the common SFB Annotation Standard. This data, which is annotated using both automatic
taggers/parsers and a small set of manual annotation tools (EXMARaLDA, ELAN,
annotate/Synpathy, MMAX, RSTTool), is mapped onto the encoding standard of the SFB,
PAULA (Potsdamer Austauschformat für Linguistische Annotation / Potsdam Interchange
Format for Linguistic Annotation), a stand-off multilevel XML format, which serves as the
basis for further processing. ANNIS2 provides the means for visualizing and retrieving this
data.

• Bibliopedia is an open source, semantic wiki research platform designed to crawl scholarly
resources including JSTOR, the Library of Congress, the Arts and Humanities Citation Index,
and similar data sources, extract metadata about works cited, convert that data into a semantic
web format, aggregate the different repositories, then display the results on a wiki-style
website for the scholarly community to verify, add to, annotate, elaborate, and discuss.

o We envisage Bibliopedia as an open, research-enabling platform designed to unify the
many disparate, closed silos of scholarly information available today that remain

26 http://www.ahrc.ac.uk/Funding-Opportunities/Research-funding/Connected-Communities/Scoping-studies-
and-reviews/Documents/Crowd%20Sourcing%20in%20the%20Humanities.pdf

27 	
 The information has been taken from http://dirt.projectbamboo.org/resources

www.dasish.eu GA no. 283646

29

difficult and time-consuming to use. Our first goal was to extract and transform
bibliographic data into a linked data format consistent with semantic web
requirements, and to create large volumes of cross-references among texts, making
digitized scholarly texts exponentially more useful to researchers and to machine
analysis. The primary innovations Bibliopedia achieves are: 1) the aggregation and
cross-referencing of separate silos of scholarly data; 2) the transformation of that
information into a format consistent with the semantic web; and 3) crowd-sourcing the
verification and elaboration of that data. Mapping and cross-referencing large-scale,
high-volume scholarship also means that unexpected connections can be found and
brought to light, along with less-known original works that might otherwise remain
unread. Moreover, formatting scholarly references for the semantic web will make
this data available to a far broader community and enable unexpected innovations.
Bibliopedia will generate custom bibliographies and visualizations based on search
results, facilitating a wide variety of scholarly inquiry and discovery. Most
importantly, Bibliopedia is designed for ease of use, so as to substantially broaden
participation to attract the largest possible range of humanities scholars as its user
base, in particular scholars who do not normally use digital tools. Bibliopedia
provides a RESTful API, SPARQL queries, linked data, Zotero-compatibility, and
many other features. Built with Drupal 7, available on github, and served from the
cloud for scalability, portability, and reliability, Bibliopedia is open to interested
academics and libraries who would like to see what their metadata looks like on the
semantic web.

• LitBlitz Literature Notes Manager is free web-based beta software that aims to improve how
students and researchers manage their notes for literature reviews, assignment research and
more. With LitBlitz, you can: avoid hours of printing, highlighting, organizing and typing;
save money involved in printing 100s to 1000s of pages, highlight and write notes without
shuffling a stack of papers, organize your notes into digital notebooks in real-time, easily
transfer notes to your draft review/assignment. LitBlitz was designed from the ground-up to
solve problems other annotation and note taking services haven't looked at or have solved
poorly. It's is different from popular note taking and archiving software like Evernote in that it
allows users to: take text and image snippets from their document/webpage sources rather than
forcing them to archive entire documents, write "Own Notes" (personal insights) related to
snippets to enable rapid draft writing and context building, manage these snippets in themed
digital notebooks for fast, easy reference. The founder is open to improving through
suggestions from librarians, academics and Ed Tech.

• MapHub is an online application for exploring and annotating digitized, high-resolution
historic maps. All user-contributed annotations are shared via the Maphub Open Annotation
API.

• Pliny is a note-taking and annotation tool. It may be used with both digital (web pages,
images, PDF files) and non-digital (books, printed articles) materials. Pliny is a desktop
application that runs on your computer, and manages annotations and notes that you gather as
you are reading.	

• PundIt is a semantic annotation and augmentation tool. It enables users to create structured
data while annotating web pages. Annotations span from simple comments to semantic links
to web of data entities (as Freebase.com and Dbpedia.org), to fine granular cross-references
and citations. Pundit can be configured to include custom-controlled vocabularies. In other
words, annotations can refer to precise entities and concepts as well as express precise
relations among entities and contents. Read more on semantically structured annotations.
Pundit is designed to enable groups of users to share their annotations and collaboratively
create structured knowledge.

• UVic Image Markup Tool allows to describe and annotate images, and store the resulting data
in TEI XML files, all within a simple enough interface that can be used by people with little or
no experience in editing XML code. Designed to be Windows-only, but can be successfully
run on Linux using Wine. It supports a wide variety of image formats and saves markup

www.dasish.eu GA no. 283646

30

information in conformant TEI P5 XML files. It has a simple, graphical interface that lets you
see the image and the fields for entering your markup notes and annotations that are visually
represented on the image. The tool allows knowledgeable TEI users to add additional TEI
markup tags to their annotations. The tool can handle multiple images in one file. Amongst the
tool’s disadvantages is that editing done to Image Markup's XML files in an external editor
may not be preserved.

• Virtual Lightbox for Museums and Archives is an educational tool for collecting and reusing in
a structured fashion the online contents of museums and archives with visual components.
With VLMA, you can browse and search collections, construct personal collections, export
these collections to xml or Impress presentation format, annotate them, and share your
collections with other VLMA users.

• WebLicht is a service-oriented architecture (SOA) for creating annotated text corpora.
Development started in October 2008 as part of CLARIN-D's predecessor project D-SPIN,
and further development and enhancement of WebLicht is an important goal of CLARIN-D,
aiming to make WebLicht a fully functional virtual research environment. WebLicht employs
chains of RESTful web services. Each web service encapsulates a certain linguistic tool. For
example, users can access, as a web service, the query component of a corpus, a format
converter, a tokenizer, a tagger, or a parser. Translation between the input format specific to
some tool and the WebLicht information interchange format TCF (see below) is performed by
a web service wrapper. Each web service adds at least one layer of annotation encompassing
the work of the tool encapsulated by that service. The output of a chain of WebLicht services
is an automatically analyzed corpus in the form of an XML document. Each WebLicht service
must be able to use a common interchange format that all the other services can also process.
CLARIN-D's Text Corpus Format (TCF), serves this purpose. It is broadly compatible with
existing related interchange formats like Negra, Paula, or TüBa-D/Z. Moreover, format-
specific converters allow interchange between them. WebLicht can be accessed only with a
valid DFN-AAI/Shibboleth-based account or a local Tübingen account.

• Zotero allows users to bookmark and save content (PDFs, images, audio and video files,
snapshots of web pages, etc.) by automatically pulling in metadata stored on websites. Users
can then search, tag and annotate any entry in their library. Zotero is primarily available as a
Firefox plug-in, but is now also available as a stand-alone version with connectors to other
browsers. Zotero also allows students to automatically create Works Cited pages by drawing
on the sources used in a document.	

	

	

6.2 Functionality mapping

The DWAN framework is designed for use with different client tools that can share annotations.
These tools are listed Table 9 and their usage is explained in more detail in potential use cases
described below in section 6.3. The functionality of each tool has been mapped to some categorization
proposed in the AHRC report on crowd-sourcing in cultural heritage and the humanities written by
Dunn and Hedges (2012)28. In this report task types were identified as the following: mechanical,
configurational, editorial, synthetic, investigative, and creative. Most annotation tools fall into the
categories of the Configurational or Editorial task types; a task is an activity that a user undertakes in
order to create, process or modify a digital asset (i.e. geospatial, text, numerical or statistical
information, sound, image, video, ephemera and intangible cultural heritage). The Configurational
type covers tasks that involve identifying structural patterns or ‘configurations’ in information, rather

28 http://www.ahrc.ac.uk/Funding-Opportunities/Research-funding/Connected-Communities/Scoping-studies-
and-reviews/Documents/Crowd%20Sourcing%20in%20the%20Humanities.pdf

www.dasish.eu GA no. 283646

31

than processing individual pieces of information. Some such tasks will require a predisposition for
working with quantitative data. The Editorial type involves modifying or improving an existing asset.

A process is a sequence of tasks through which an output is produced by operating on an asset.
Moreover, a tool is considered informal if it has pre-defined entities which can be added as
annotations and formal if it does not.	
 	
 	
 	

	
 	
 	
 	
 	
 	

Table 9. Tools that can be used as DWAN front-ends

Name task type task sub-type process type asset
type

formal/
informal

co
lla

bo
ra

tiv
e

pl
at

fo
rm

Bookends Configurational;
editorial

bibliographic
annotation Contextualization text informal N

LitBlitz
Literature
Notes Manager

Editorial bibliographic
annotation

Commenting,
critical responses
and stating
preferences

text informal N

NoodleTools Configurational bibliographic
annotation

Commenting,
critical responses
and stating
preferences

text informal Y

Projects Configurational bibliographic
annotation Contextualization text informal N

Qigga Configurational bibliographic
annotation Contextualization text informal N

Sente Configurational bibliographic
annotation Cataloguing text informal N

Greenshot Editorial image
annotation

Commenting,
critical responses
and stating
preferences

images informal N

HyperImage Editorial image
annotation Linking images informal N

NewRadial
(INKE) Configurational image

annotation Linking text;
image informal N

www.dasish.eu GA no. 283646

32

Skitch Configurational image
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

UVic Image
Markup Tool Editorial image

annotation

Commenting,
critical responses
and stating
preferences

images informal N

Juxta Configurational;
editorial

image
annotation;
syntax/semanti
c annotation

Linking text formal N

MapHub Editorial;
configurational map annotation Contextualization geospati

al informal Y

NB Editorial PDF
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal Y

Skim Editorial PDF
annotation Contextualization text;

image informal N

iAnnotate Editorial PDF
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

Advene Editorial schema
definition Linking video informal Y

Anvil schema
definition

Commenting,
critical responses
and stating
preferences

video informal N

Annotator\'s
Workbench Editorial segmenting

video

Commenting,
critical responses
and stating
preferences

video informal N

CLAWS
Tagger Editorial syntax/semanti

c annotation Cataloguing text formal N

GATE Editorial syntax/semanti
c annotation

Collaborative
tagging text formal Y

www.dasish.eu GA no. 283646

33

MMax2 Editorial syntax/semanti
c annotation

Commenting,
critical responses
and stating
preferences

text informal N

Melita Editorial;
configurational

syntax/semanti
c annotation Contextualization text formal N

Pundit Configurational syntax/semanti
c annotation Linking text;

image formal Y

Thinkport
Annotator Editorial syntax/semanti

c annotation

Commenting,
critical responses
and stating
preferences

text informal Y

UAM
CorpusTool Configurational syntax/semanti

c annotation

Commenting,
critical responses
and stating
preferences

text formal Y

Versioning
Machine Editorial syntax/semanti

c annotation

Commenting,
critical responses
and stating
preferences

text informal N

Word Hoard Editorial syntax/semanti
c annotation

Commenting,
critical responses
and stating
preferences

text formal Y

WordFreak Editorial syntax/semanti
c annotation Contextualization text formal N

brat rapid
annotation tool

Editorial;
configurational

syntax/semanti
c annotation Contextualization text formal N

QDA Miner -
Qualitative
Data Analysis
Software for
Qualitative
Research

Editorial;
configutrational

syntax/semanti
c annotation;
image
annotation

Linking; cataloguing text;
image informal N

Annotation
Graph Toolkit
(AGTK)

Configurational time-series
annotation Cataloguing text formal N

VideoANT Configurational time-series
annotation Linking video informal N

www.dasish.eu GA no. 283646

34

Mediathread Editorial;
configurational

web media
annotation Linking; cataloguing

text;
image;
video

informal N

Rehersal
Assistant Editorial web media

annotation Contextualization video;
audio informal N

Vertov Editorial web media
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

A.nnotate.com Editorial web page
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

Annozilla
(Annotea on
Mozilla)

Editorial web page
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal Y

Fleck Editorial web page
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

NoteBook Editorial web page
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

Project Pad Editorial;
configurational

web page
annotation

Commenting,
critical responses
and stating
preferences

text;
image;
video;
sound

informal N

SharedCopy Editorial web page
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

Springpad Configurational web page
annotation

Commenting,
critical responses
and stating
preferences;
Collaborative
tagging

text;
image informal Y

Trailfire Configurational web page
annotation Linking text;

image informal Y

Pliny Editorial

web page
annotation;
PDF
annotation

Commenting,
critical responses
and stating
preferences

text;
image informal N

www.dasish.eu GA no. 283646

35

Bibliopedia Configurational;
editorial wiki annotation Contextualization text informal N

FromThePage Editorial wiki annotation Transcription text informal Y

ANNIS Editorial Contextualization text formal N

Annotator Editorial

Commenting,
critical responses
and stating
preferences

text;
image informal

Y
 (c

an
 b

e
st

or
ed

 in
 A

nn
ot

ea
)

Annotorious Editorial

Commenting,
critical responses
and stating
preferences

video informal

Y
 (v

ia
 O

K
F)

Atlas.ti Synthetic Contextualization text;
image informal N

	

6.3 Potential front-ends for DWAN in Social Sciences and Humanities.

Following the previous categorization in section above (i.e. task type, process type, asset type)
nineteen specific cases of uses HSS researchers make of annotation, not necessarily covering just
current DWAN functionality, can be identified and grouped under six topics: bibliography, image,
web page, syntax/semantics, wiki, video. To describe sets of functionalities demanded to satisfy
expectations for an annotating tool for each of these topics, we first introduce the following notations,
where UC abbreviates “Use Case”:
	

UC 1: Highlight text
UC 2: Add comments in the form of scribbled notes (text to text)
UC 3: Add comments in the form of scribbled notes (text to image)
UC 4: Modify text: Add information to text (within the text)
UC 5: Modify text: delete information (within the text)
UC 6: Tag an image with keywords
UC 7: Save own annotations
UC 8: Share own annotations via email, Twitter, and Facebook
UC 9: Share selected parts of the original resource via email, Twitter, and Facebook
UC 10: Collaborative annotations (different users)
UC 11: Track versions of annotations

www.dasish.eu GA no. 283646

36

UC 12: Textual interpretation: translation
UC 13: Enhance text with links
UC 14: Enhance text with images
UC 15: Enhance image with text
UC 16: Enhance text with video
UC 17: Enhance text with audio
UC 18: Insert definitions
UC 19: Insert references

	

Such Use Cases can then be grouped under six headings: bibliography, image, web page,
syntax/semantics, wiki, and video. One Use Case can follow under several headings.

• Bibliography : UC 1, UC 2, UC9, UC11, UC13.
• Image: UC9, UC 11, UC 3, UC 6, UC 7, UC 8, UC14, UC 15, UC 18, UC 19.
• Web page: UC 1, UC 2, UC 9, UC 11, UC 3, UC 6, UC 4, UC 7, UC 8, UC 12, UC 13, UC18,

UC19, UC16.
• Syntax/semantic: UC 1, UC 2, UC 9, UC 11, UC 4, UC 5, UC 7, UC 8, UC 12, UC 13, UC

18, UC 19, UC 16, UC 17.
• Wiki: UC 1, UC 2, UC 9, UC 11, UC 4, UC 5, UC 7, UC 8, UC 10, UC 12, UC 13, UC 18, UC

19, UC 16, UC 17.
• Video: UC 9, UC 11, UC 3, UC 6, UC 7, UC 8, UC 19.

	

The mapping from a topic to its list of features can be illustrated by six corresponding user

scenario’s. 	

1) Bibliographic annotation. Review of tools available: LitBlitz Literature Notes Manager,

NoodleTools, Projects, Oigga, Sente. All but one of these are configurational, i.e. that they tend to
support the organization and ordering of database records, rather than the annotation of those records
with further information.

Scenario: a user has a bibliography they have formed over five years of research, on a specific
geographic area. In this case the bibliography is the archaeology of Cyprus in the Byzantine period.
Each bibliographic reference is the authority for a particular spelling of a particular place-name, e.g.
“Paphos” as opposed to “Pafos”. The user wishes to use their bibliographic resource to annotate place-
name references in the third-party document with their bibliography. This may be viewed as
‘enhanced citation’.

Formal/informal: The annotations of the text is a formal annotation requirement, as the third party
text is being annotated with pre-existing information. The annotations of the bibliography are
informal, as they provide free text information on each individual item.

Asset: The asset is purely textual. Previously the researchers have kept it in a Word document on
their local hard-drive but recently, as one of the outputs of a research project, they have published it
online as part of an inventory, marked up in XML, of Byzantine monuments in Cyprus. It is available
on a webpage as a list of publications with author, title, periodical title (if appropriate), date of
publication and page reference.

Annotations take the form of links to the bibliographic records in the researcher’s database, and
also the annotations they have made on the bibliographic records. The latter might include ‘is this
reference up to date’ or ‘is it being cited in agreement or disagreement’.

The annotations in the bibliography should be able to link simultaneously to multiple bibliographic
references.

Necessary functions:
- Highlight text, placing markers on particular publications as aides-memoire for publication

they are working on. This would be whole records/paragraphs rather than individual words.
- They may also wish to Add comments in the form of scribbled notes.
- They may wish to Share selected parts of the original resource via email, Twitter, and

Facebook, although email is likely to be far the most useful of these, as they will wish to share
references to their bibliography with individual colleagues.

www.dasish.eu GA no. 283646

37

- Enhance text with links. Using records in the bibliography to annotate sections of text in a
second document. This would be done by embedding hyperlinks in the second document,
pointing back to the bibliography records.

- In the application therefore, the third party text is annotated twice, first with the bibliography
and second with the annotations of the bibliography. Both types are displayable in hover-over
boxes on the third party document.

	

2) Image annotation. Review of tools available: Greenshot, HyperImage, NewRadial (INKE),

Skitch, UVic Image Markup Tool. These tools are both configurational and editorial. This reflects the
need to both organize image collections with annotations, and to link comments/notes with them.

Scenario: User has downloaded a large (1000+) image collection from www.flickr.com/commons.
It is themed around European cultural heritage in the nineteenth and twentieth centuries, containing
primarily images of objects from museums, but also contains images documenting specific events.
These could include major political events such as those connected to WW1, or scenes from everyday
life and objects (see example from the University of Reading’s Museum of English Rural Life).

This scenario is applicable to scholars, but also, potentially, to museum and collections curators.
Formal/informal: Mostly, the functionalities required are informal. The main need is to support the

user in providing commentaries on individual images, and to select particular parts of particular
images for specific commentary on those specific parts. However, the user may also wish to construct
formal lists/taxonomies of the various aspects depicted. These could include objects (e.g. teapots,
statues, vases, weapons, vehicles), time periods, and locations. Asset: the assets are images, stored
either locally in the user’s computer, or in a private cloud space.

Necessary functions:
- The primary function needed is to Add comments in the form of scribbled notes (text to

image). Either the user will wish to tag entire images or selected parts. In the example below,
they will wish to define a particular part of the image, and associate tags and/or full text
comments with these. In the example given, this might include ‘steam tractor’, ‘hat’, ‘person’,
and ‘building.

- The user is likely to wish to share selected parts of the original resource via email, Twitter,
and Facebook. In the case of a scholar, they wish to share only by email. In the case of a
curator, or public engagement professional, they may wish to share via social media, e.g.
using the #AskACurator or #MuseumsWeek hashtags. To do this, they will have to Save their
own annotations locally.

- It will be necessary to Track versions of annotations.
- The user will wish to Tag a whole images with keywords. This functionality is already

supported by www.flickr/com/commons, so the use of the Flickr API would be more
appropriate than the construction of a new system.

- They should have the ability to embed bibliographic references in the annotations. They could
then, for example, connect related entries from the V&A catalogue in London
(http://collections.vam.ac.uk), treating each collection entry as a bibliographic entity.

	

3) Web page annotation. Review of tools available: Mediathread, Rehersal Assistant, Vertov,

A.nnotate.com, Annozilla (Annotea on Mozilla), Fleck, NoteBook, Project Pad, SharedCopy,
Springpad, Trailfire. All but three of these tools are editorial. This reflects the fact that browser-based
bookmarking and generic services such as https://delicious.com are adequate to meet most
researchers’ needs for organizing collections of web pages, the need for editorial, comment-based
annotation is far more acute.

Scenario: User is researching methods used in 3D reconstruction of archaeological sites and
objects. They have a need to both define and add annotations to a variety of different web pages,
especially results of searches using Google Images and Google Scholar. Specifically they are
interested in linking data created in the Unity 3D modeling package with Geographic Information
Systems (GIS) data. They therefore need to compile a profile of web resources which refer to this
issue. They are leading on this task in a collaborative team, and thus need to share their annotations
with colleagues remotely, and with research students. These colleagues will need to be able to add
annotations as well, and formulate replies to existing annotations.

www.dasish.eu GA no. 283646

38

Formal/informal: this is an informal referencing requirement, as the researcher will only be adding
new information in the form of annotations.

Assets: the assets are primarily text and images, but may also include video. They are not stored
locally.

Examples include:
Official advice from Unity (http://unity3d.com/learn/resources/talks/gis-terrain-unity),
Q&A threads (http://answers.unity3d.com/questions/17829/how-can-i-import-
gis-data-into-a-unity-project.html) and bibliography

(http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5567608&url=http%3A%2F%2Fieeexplore.ie
ee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5567608).

Necessary functionalities:
- Firstly, the use will need to Save their own annotations in the form of Add comments in the

form of scribbled notes (text to text and text to image).
- These are stored in a shared collaborative space. The annotations will need to contain

metadata detailing the page URL and the part of the page being referred to. It will be
necessary to specify start and end points, allowing the user to Highlight text and Highlight
images. For this scenario, it will not be necessary to highlight parts of images.

- Each annotation will have to be able to point to multiple parts or the same web page, or to
multiple web pages.

- In a shared collaborative environment, it will be necessary to Track versions of annotations,
including responsibility for different versions.

- This scenario reflects the probability that collaborative annotation is likely to be of (scholarly)
use only within relatively well defined groups of researchers working on a common task. The
tools overview suggests that there is less demand for community-wide annotation
applications.

	

4) Syntactic and Semantic annotation. Review of tools available: CLAWS Tagger, GATE,

MMax2, Melita, Pundit, Thinkport Annotator, UAM CorpusTool, Versioning Machine, Word Hoard,
WordFreak, brat rapid annotation tool, QDA Miner – Qualitative (Data Analysis Software for
Qualitative Research).

Text annotation, both structured (syntactic) and unstructured (semantic) is a fundamental part of
the research process in most disciplines. It is by far the most common form of annotation currently
carried out by humanities scholars, and supported by the current tools offering. The tools above
therefore support a range of configurational and editorial tasks.

Scenario: User (a Latinist and historian) is creating a digital critical edition of Marcus Tullius
Cicero’s judicial speeches. They have downloaded the fifty-two surviving examples from the Perseus
Digital Library (http://www.perseus.tufts.edu/hopper) and stored them locally. 	

Formal/informal: Informal annotations are critical here, to add context, historical allusions,
biographical notes on persons mentioned and places referred to. However formal annotation methods
may also be required, especially in support of automated parsing and natural language processing
(NLP). However, much of this information will be already be available as TEI XML markup in the
Perseus documents. 	

Necessary functionalities:
- A primary function is to be able to Highlight text that is relevant to a) particular arguments

made by Cicero, important passages and references to important exchanges. It will also be
necessary to highlight quotations which have significance in other contexts. They will also
wish to highlight important general entities (see below).

- One the text is highlighted, the user will wish to Add comments in the form of scribbled notes
(text to text). As well as free text, they will wish to construct annotations using their own
vocabulary lists of important general entities. These will include, but not exhaustively:
important personages, such as Caesar, Sextus, Pompey, contemporary events such as the
formation of the First Triumvirate and the Civil, places such as Rome, Brundisium, roles such
as aedile and senator, laws. Any word, phrase or passage that the user wishes to associate with
these events would need to be defined and an associative term or terms selected.

www.dasish.eu GA no. 283646

39

- Assuming the critical edition will involve translation or all or part of the corpus, the user will
need to annotate any passages where the translation is, for any reason, indirect.

- It will be essential for the user to be able to Track versions of annotations, and to be able to
delete obsolete versions.

- They will need to be able to Save their own annotations.
- The user will need to be able to Modify text: Add information to text (within the text) as well

as delete information (within the text) if, in their judgement, there is repetition or trantextual
inaccuracy, or if abridgement is needed for any other reason. The deletion, and the text
deleted, should be preserved as an annotation.

-­‐ The user will need to be able to embed links to other texts, bibliography, video and image
media. 	

	

5) Wiki based annotation. Review of tools available: Bibliopedia. The requirements for wiki based

annotation are similar to those required for web page annotation. However, there is an additional
requirement to capture and annotate changes made to the wiki pages over time. Both available tools
have primarily editorial functions.

Scenario: User is conducting a project to capture the reception of public monuments, including the
Parthenon in Athens. They will therefore need to annotate not only the main page of the wiki, but also
the ‘Talk’ history of the page, and are likely, later on, to have edits/additions to make to the Wikipedia
page itself. The project is therefore about using annotation to capture discussion about a contentious
page, and Formal/informal: only informal annotations are relevant here.

Assets: The assets involved are text and images.
Necessary functionalities:
- The user will need to Save their own annotations in the form of Add comments in the form of

scribbled notes (text to text and text to image).
- These are stored in a shared collaborative space. The annotations will need to contain

metadata detailing the wiki URL and the part of the page being referred to. It will be necessary
to specify start and end points, allowing the user to Highlight text and Highlight images. For
this scenario, it will not be necessary to highlight parts of images.

- Each annotation will have to be able to point to multiple parts or the same wiki page, or to
multiple web pages.

- In a shared collaborative environment, it will be necessary to Track versions of annotations,
including responsibility for different versions.

- To gauge discussion on the topic, there is an important requirement to be able to share
selected parts of the original resource via email, Twitter, and Facebook.

	

6) Video annotation. Review of tools available: Advene, Annotator\'s Workbench, Annotorius,

Anvil, Atlas.ti, HyperImage, Mediathread, Project Pad, Rehersal Assistant, VideoANT.
Video annotation is probably not the most common form of annotation currently carried out by

humanities scholars, however, the literature review shows that several tools that support such activity
are in fact used within the HSS communities. This reflects the need to both organize video collections
with annotations, and to link comments/notes with them.

Scenario: User has downloaded a few videos from www.youtube.com and made a collection
themed around the current use of digital tools among Social Sciences and Humanities scholars. He
opens such collection to other users, or collaborators. Both the original user and their collaborator can
annotate the videos and share such annotations in a research environment. The collection could
include keynote speeches, university lectures , conference and seminar papers as well as software
tutorials. The user then wants to share selected parts of the original resource via social media, add
personal comments and then share such comments via social media as well.

This scenario is applicable to scholars and universities but also, potentially to software engineers
and programmers. Formal/informal: both formal and informal annotations can be relevant here.

Assets: the assets are primarily videos but may involve text and images as well.
Necessary functionalities:

www.dasish.eu GA no. 283646

40

- To gauge discussion on the topic, there is an important requirement to be able to share
selected parts of the original resource via email, Twitter, and Facebook.

- The user may wish to add comments in the form of Add comments
- The user will want to save their own comments in a collaborative environment
- Collaborators will have the right to view the user’s annotations as well as to add their own
- In a shared collaborative environment, it will be necessary to Track versions of annotations,

including responsibility for different versions.
- The user will need to be able to embed links to relevant texts, bibliography, video and image

media.

www.dasish.eu GA no. 283646

41

Appendix A: XML schema.

There are 5 sorts of resources in DASISH: CachedRepresentation, Target, Principal, Annotation,
Notebook. Each of them has the corresponding xsd-type in the schema. There is no type with the name
CachedRepresentation because a cached representation is a "pure" resource like an image or a text file
that does not contain any meta-information about itself. The metadata of a cached presentation are
defined via an instance of CachedRepresentationInfo type.

Each of resource types has an obligatory attribute "id" which contains DASISH identifier pointing
to the location of the resource on the DASISH server. Resource-info types TargetInfo, AnnotationInfo,
NotebookInfo contain reference to the corresponding resource plus the most important information
about the resource. There are corresponding list-of-resource-info types: TargetInfos, AnnotationInfos,
NotebookInfos.

<xs:schema targetNamespace="http://www.dasish.eu/ns/addit"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 xmlns:dasish="http://www.dasish.eu/ns/addit">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2005/08/xml.xsd"/>

 <xs:complexType name="List">
 <xs:sequence/>
 </xs:complexType>

 <xs:complexType name="ReferenceList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="href" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="CachedRepresentationInfo">
 <xs:sequence>
 <xs:element name="mimeType" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="tool" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="type" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <!-- used in the target -->
 <xs:complexType name="CachedRepresentationFragment">
 <xs:sequence>
 <xs:element name="fragmentString" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="CachedRepresentationFragmentList">
 <xs:complexContent>
 <xs:extension base="dasish:List">

www.dasish.eu GA no. 283646

42

 <xs:sequence>
 <xs:element name="cached" type="dasish:CachedRepresentationFragment"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Target">
 <xs:sequence>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="link" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="version" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="siblingTargets" type="dasish:ReferenceList" minOccurs="1"/>
 <xs:element name="cachedRepresentatinons"
type="dasish:CachedRepresentationFragmentList"
 minOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="TargetInfo">
 <xs:sequence>
 <xs:element name="link" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="version" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="TargetInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="targetInfo" type="dasish:TargetInfo" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Principal">
 <xs:sequence>
 <xs:element name="displayName" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="eMail" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="CurrentPrincipalInfo">
 <xs:sequence>
 <xs:element name="currentPrincipal" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>

www.dasish.eu GA no. 283646

43

 </xs:complexType>

 <xs:complexType name="CurrentPrincipalInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="currentPrincipalInfo" type="dasish:CurrentPrincipalInfo"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:simpleType name="Access">
 <xs:restriction base="xs:string">
 <xs:enumeration value="read"/>
 <xs:enumeration value="write"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="Permission">
 <xs:attribute name="principalHref" type="xs:anyURI" use="required"/>
 <xs:attribute name="level" type="dasish:Access" use="required"/>
 </xs:complexType>

 <xs:complexType name="PermissionList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="permission" type="dasish:Permission"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="public" type="dasish:Access" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Annotation">
 <xs:sequence>
 <xs:element name="ownerHref" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="headline" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="body" type="dasish:AnnotationBody" minOccurs="1" maxOccurs="1"/>
 <xs:element name="targets" type="dasish:TargetInfoList" minOccurs="1" maxOccurs="1"/>
 <xs:element name="permissions" type="dasish:PermissionList" minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="AnnotationInfo">
 <xs:sequence>
 <xs:element name="ownerHref" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>

www.dasish.eu GA no. 283646

44

 <xs:element name="headline" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="targets" type="dasish:ReferenceList" minOccurs="1" maxOccurs="1"
 />
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="AnnotationInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="annotationInfo" type="dasish:AnnotationInfo" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="AnnotationBody">
 <xs:choice>
 <xs:element name="textBody">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="mimeType" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="body" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="xmlBody">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="mimeType" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:any minOccurs="1" maxOccurs="1" processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="Notebook">
 <xs:sequence>
 <xs:element name="ownerRef" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="title" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="annotations" type="dasish:ReferenceList" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="permissions" type="dasish:PermissionList" minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="NotebookInfo">

www.dasish.eu GA no. 283646

45

 <xs:sequence>
 <xs:element name="ownerHref" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="title" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="NotebookInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="notebookInfo" type="dasish:NotebookInfo" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!--- Envelopes -->

 <xs:simpleType name="AnnotationActionName">
 <xs:restriction base="xs:string">
 <xs:enumeration value="CREATE_CACHED_REPRESENTATION"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="PermissionActionName">
 <xs:restriction base="xs:string">
 <xs:enumeration value="PROVIDE_PRINCIPAL_INFO"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="Action">
 <xs:sequence>
 <xs:element name="object" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="message" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ActionList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="action" type="dasish:Action" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- response envelope (not a resource, used for all response on POST/PUT requests) -->

 <!-- "envelope"-->
 <xs:complexType name="ResponseBody">
 <xs:sequence>

www.dasish.eu GA no. 283646

46

 <xs:choice>
 <xs:element name="annotation" type="dasish:Annotation"/>
 <xs:element name="permissions" type="dasish:PermissionList"/>
 <xs:element name="notebook" type="dasish:Notebook"/>
 </xs:choice>
 <xs:element name="actionList" type="dasish:ActionList" minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

<!-- ############ ELEMENTS ################# !-->
 <xs:element name="action" type="dasish:Action"/>
 <xs:element name="actionList" type="dasish:ActionList"/>
 <xs:element name="annotation" type="dasish:Annotation"/>
 <xs:element name="annotationBody" type="dasish:AnnotationBody"/>
 <xs:element name="annotationInfo" type="dasish:AnnotationInfo"/>
 <xs:element name="annotationInfoList" type="dasish:AnnotationInfoList"/>
 <xs:element name="annotationList" type="dasish:ReferenceList"/>
 <xs:element name="cachedRepresentationInfo" type="dasish:CachedRepresentationInfo"/>
 <xs:element name="cachedRepresentationList" type="dasish:ReferenceList"/>
 <xs:element name="cachedRepresentationFragment"
type="dasish:CachedRepresentationFragment"/>
 <xs:element name="cachedRepresentationFragmentList"
type="dasish:CachedRepresentationFragmentList"/>
 <xs:element name="list" type="dasish:List"/>
 <xs:element name="notebook" type="dasish:Notebook"/>
 <xs:element name="notebookInfo" type="dasish:NotebookInfo"/>
 <xs:element name="notebookInfoList" type="dasish:NotebookInfoList"/>
 <xs:element name="notebookList" type="dasish:ReferenceList"/>
 <xs:element name="permissionList" type="dasish:PermissionList"/>
 <xs:element name="responseBody" type="dasish:ResponseBody"/>
 <xs:element name="target" type="dasish:Target"/>
 <xs:element name="targetInfo" type="dasish:TargetInfo"/>
 <xs:element name="targetInfoList" type="dasish:TargetInfoList"/>
 <xs:element name="targetList" type="dasish:ReferenceList"/>
 <xs:element name="principal" type="dasish:Principal"/>
 <xs:element name="currentPrincipalInfo" type="dasish:CurrentPrincipalInfo"/>
 <xs:element name="currentPrincipalInfoList" type="dasish:CurrentPrincipalInfoList"/>
 <xs:element name="principalList" type="dasish:ReferenceList"/>

 <xs:element name="referenceList" type="dasish:ReferenceList"/>
 <xs:element name="access" type="dasish:Access"/>
 <xs:element name="annotationActionName" type="dasish:AnnotationActionName"/>
 <xs:element name="permission" type="dasish:Permission"/>
 <xs:element name="permissionActionName" type="dasish:PermissionActionName"/>
</xs:schema>

www.dasish.eu GA no. 283646

47

Appendix B: DWAN Wired-Marker manual.

DISCLAIMER: As DWAN tools are under continuous development at the time of writing this
report; the manual may be not completely up-to-date. The final manual with a clear description of the
framework together with instructions on how to use it will be published at the end of the project in the
DASISH DWAN GitHub location29.

DWAN Wired-Marker client as a part of DWAN framework

The DWAN client is a Firefox extension that enables a user to create free-text annotations on

fragments of webpage content. Moreover, the user can share his annotation with other users by
granting reader or writer permissions. The DWAN client has been developed on the basis of the
existing Wired Marker web-annotation (Firefox Plugin) software, by adjusting it for collaborative
annotating needs. The DWAN Wired-Marker version is implemented by adding program modules
allowing sending and receiving requests to the common server database where the annotations of all
users are stored.

The database and the server software that implements access to the database, constitutes the back-
end with which the DWAN Wired-Marker client communicates. The DWAN Wired-Marker instances,
and also other DWAN compatible clients, have access to the database via a uniform service interface
available over HTTP. In order to communicate with the back-end, clients must satisfy certain
requirements: first of all, they should be able to send and receive requests in XML format according to
the DWAN Schema; then, such requests should also satisfy DWAN’s API patterns.

The DWAN back-end and the DWAN compatible clients constitute the DWAN framework that is a
solution for collaborative annotation. An important feature of the DWAN framework is that created
content and sources can be stored in a shared database. In its turn, the DWAN Wired-Marker client
allows a user to send and retrieve cached copies of the annotated resources.

Individuals as well as groups of researchers from different institutions, countries or backgrounds
can all benefit from using DWAN framework. Research Institutes or groups of researchers can
develop their own clients for their particular use and purposes and as such they will have access to the
shared DWAN Database.

Download and installation

The DWAN client can be installed or downloaded from the github repository,

https://github.com/DASISH/dwan-client-wiredmarker/releases. One can install it by navigating to this
web page using the Firefox web browser, clicking on green button “dasishwebannotator.xpi” and
following the simple standard instructions issued by the browser, like “allow” to install software from
the site.

A second option is to start up a Firefox, drag and drop the xpi-file onto the Firefox window and yet
another option is to: 1) download the xpi file in some directory of the user’s computer; 2) run the
Firefox add-on manager; 3) follow “Install add-on from File” procedure by clicking the corresponding
menu (see Figure 7).

29 https://github.com/DASISH/dwan-documentation

www.dasish.eu GA no. 283646

48

Figure 7. Firefox menu to start installation of the DWAN client from file

After installation is completed, “DWAN/Dasish Web Annotator” is added to the Firefox menu and

once activated, the DWAN menu will appear on the left sidebar.

Account management and logging-in

In order to use DWAN one needs to login into the back-end. DWAN offers two ways of
authentication: (A) using a federated login e.g. Shibboleth and (B) with a local DWAN account that
you can create yourself by filling in a form on the DWAN server-generated web page where you
provide your login, e-mail address and password. Below both authentication procedures are described
in more detail.
(A) If your institution is part of the DWAN supported trust federation30 and listed within the Discovery

Service list of home organizations (see Figure 8) you login with your institution credentials.
Choose from the list of home organizations, select, and log in.

(B) If your institution is not listed on the home organization list, you can create a user account
following the following steps:

a. Go to https://myserver/ds/webannotator-basic. 31
b. click on Register as a non-Shibboleth user
c. fill in the user registration form and submit it
d. go to DASISH Web Annotator > Settings > Server > write this link:

https://myserver/ds/webannotator-basic in the User Specified box and close. See Figure 9
for an example

30 Currently the DWAN back-end is connected to the CLARIN trust federation and allows access to

all home organizations using CLARIN services as are also all eduGAIN connected home
organizations.

31 For example, the current DWAN annotation service is located at
https://lux17.mpi.nl/ds/webannotator-basic/

www.dasish.eu GA no. 283646

49

Viewing annotations

Annotations created on other client instances or by other users are all listed in the Incoming folder,

in the left side box. The DASISH website is the default webpage. Navigate to the page you are
interested in. Click the “reload” icon in the browser bar. If the page has been already annotated, a full
list of annotations will appear on the bottom-left side of the browser window. The list can be ordered
by annotations’ title or date. Please note, it is not possible to see the author of the annotations.

To see annotations from the other users, click on the annotation you want to se from the full list. It
will appear on the webpage marked by light yellow color, see Figure 10.

To view own annotations, navigate to the Marker folder and click on the color used to make the
annotation you are interested in. You will see the list of all annotations marked by this color. Select
the one you need.

If an annotation does not appear after clicking on it and also after refreshing the page, it means that
the DWAN client cannot resolve the annotated fragment. The most probable reason for this is that the
webpage has been changed since it was annotated.

However, in DWAN a user can see the annotations even if the webpage has changed. This is done
by requesting cached representations of the corresponding annotated pages. To do this, point the
mouse to the annotation in question and right-click. In the pop-up menu select "Cached
representations" and click "open remote cache" in the sub-menu. You will be able to get the cached
representation of the page, which almost always looks like the original page. You will find the
annotation you are interested in.

Figure 8 Authentication using Federated Identity

Figure 9 Configuring the Service Location

www.dasish.eu GA no. 283646

50

Annotating documents and editing annotations

To annotate a web-document, navigate to the corresponding webpage and select a text fragment

with the mouse. After right click select “Marker”-folder in the menu. Next, select the color you would
like to use to mark the text fragment, see Figure 11. Selecting a markerFigure 11. Following this, a
pop-up text-box with two fields appears. One can assign a distinctive title to the annotation in the Title
field and write a clear short description in the Annotation field. To save the work, click “ok”. This then
(finally) creates the annotation. It is shown on the web page now.

To update the annotation, pick it up in the list, right click it and select “Properties” in the menu.
The form for editing will appear, and by selecting tabs “Brief Overview” or “Annotation” one can edit
the title and the text body. See Figure 12. Note, that only the creator of annotation or a user with
“write” access can update the annotation.32

32 Adding possibilities to change access rights is currently work in progress

Figure 10. Viewing annotations of other users

Figure 11. Selecting a marker

www.dasish.eu GA no. 283646

51

Figure 12. Editing annotation

When the user creates an annotation, all registered users except the creator (“owner”) get read
access. The owner has write access, and users with write access can edit the annotation. Only the
owner of an annotation can change the rights of other users and delete the annotation.

To change the access rights of an annotation right click it and select “Permissions”. Fill in the pop-
up form, see Figure 13

Public access defines minimal access rights for each logged-in user. For instance, if it is set to
read then each logged-in user is able to read the annotation. Rights for a particular user are defined as
maximum of public access and his individually set rights. For instance, the user with the e-mail
xxx.yyy@mpi.nl on the Figure 13 has write access. To delete an annotation, look for it in the list, right
click it and select ‘Delete’.

Figure 13. Changing access rights for a selected annotation

www.dasish.eu GA no. 283646

52

Troubleshooting

Advanced users and developers can examine the relationship between the Back-end and the Front-

end directly by installing Firebug or Tamper Data, which are two other Firefox add-ons. This can be
useful in situations where DWAN does not seem to work properly.

Because of the updates of the DWAN client, Firefox and operating systems, sometimes it is
necessary to reinstall the client after a new release. Normally, it is necessary first to de-install the
current version of the DWAN client following standard Firefox procedure of the add-on manager.
Follow Tools > Add-ons in the browser menu to start the add-on manager. Within the add-on manager
choose to de-install a selected extension, e.g. the DWAN client. Now, the second step: the new
version of the DWAN client can be installed as it is described in the beginning of this manual.

However, sometimes the newly installed version would not work. In this case one should inform
the administrator and the DWAN developers. Still to be able to work, create a new Firefox profile.
Within this new profile you will download and start the new version of the DWAN client as usual.
How to make a new profile and start it, is explained in detail at https://support.mozilla.org/en-
US/kb/profile-manager-create-and-remove-firefox-profiles.

Alternatively, on MAC OS one can create a profile via Terminal window by using the command

mkdir -p ~/Library/Application\ Support/Firefox/Profiles/nameofprofile. The instance of the Firefox
with the given profile can by launched by the command
 /Applications/Firefox.app/Contents/MacOS/firefox -profile
~/Library/Application_Support/Firefox/Profiles/nameofprofile -no-remote.

To create and use a new Firefox profile in Windows you can use the Firefox Profile Manager that
allows you to create a new profile while retaining your original one. If Firefox is open, close it
completely by choosing “File -> Exit”. Go to the Windows Start Menu and select “Run”. Enter
firefox.exe –P and click OK. Click the “Create Profile” button on the “Firefox – Choose User Profile”
window that comes up. Click “Next >” in the “Create Profile Wizard” window that comes up. Type in
a new name in the “Enter new profile name” box and click “Finish”. Clear the “Don’t ask at startup”
box so that it is unchecked and click the “Start Firefox” box. Firefox will then start with a new profile.

